Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epigenetics ; 19(1): 2337087, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38564758

RESUMO

Decidual macrophages are the second-largest immune cell group at the maternal-foetal interface. They participate in apoptotic cell removal, and protect the foetus from microorganisms or pathogens. Dysfunction of decidual macrophages gives rise to pregnancy complications such as preeclampsia and recurrent spontaneous miscarriage (RSM). However, the mechanisms by which decidual macrophages are involved in the occurrence of adverse pregnancy outcomes have not been elucidated. Here we integrated DNA methylation and gene expression data from decidua macrophages to identify potential risk factors related to RSM. GPR133 was significantly hypomethylated and upregulated in decidual macrophages from RSM patients. Further demethylation analysis demonstrated that GPR133 expression in decidual macrophages was significantly increased by 5-Aza-dC treatment. In addition, the influence of GPR133 on the phagocytic ability of macrophages was explored. Phagocytosis was impaired in the decidual macrophages of RSM patients with increased GPR133 expression. Increased GPR133 expression induced by demethylation treatment in the decidual macrophages of healthy control patients led to a significant decrease in phagocytic function. Importantly, knockdown of GPR133 resulted in a significant improvement in the phagocytic function of THP-1 macrophages. In conclusion, the existing studies have shown the influence of GPR133 on the phagocytic function of decidual macrophages and pregnancy outcomes, providing new data and ideas for future research on the role of decidual macrophages in RSM.


Assuntos
Aborto Espontâneo , Decídua , Feminino , Humanos , Gravidez , Aborto Espontâneo/genética , Decídua/metabolismo , Metilação de DNA , Macrófagos , Fagocitose , Regulação para Cima
2.
Front Nutr ; 10: 1191903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575322

RESUMO

Substance use disorders (SUD) can lead to serious health problems, and there is a great interest in developing new treatment methods to alleviate the impact of substance abuse. In recent years, the ketogenic diet (KD) has shown therapeutic benefits as a dietary therapy in a variety of neurological disorders. Recent studies suggest that KD can compensate for the glucose metabolism disorders caused by alcohol use disorder by increasing ketone metabolism, thereby reducing withdrawal symptoms and indicating the therapeutic potential of KD in SUD. Additionally, SUD often accompanies increased sugar intake, involving neural circuits and altered neuroplasticity similar to substance addiction, which may induce cross-sensitization and increased use of other abused substances. Reducing carbohydrate intake through KD may have a positive effect on this. Finally, SUD is often associated with mitochondrial damage, oxidative stress, inflammation, glia dysfunction, and gut microbial disorders, while KD may potentially reverse these abnormalities and serve a therapeutic role. Although there is much indirect evidence that KD has a positive effect on SUD, the small number of relevant studies and the fact that KD leads to side effects such as metabolic abnormalities, increased risk of malnutrition and gastrointestinal symptoms have led to the limitation of KD in the treatment of SUD. Here, we described the organismal disorders caused by SUD and the possible positive effects of KD, aiming to provide potential therapeutic directions for SUD.

3.
Front Immunol ; 13: 880286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911719

RESUMO

Macrophages are versatile immune cells associated with various diseases, and their phenotypes and functions change on the basis of the surrounding environments. Reprogramming of metabolism is required for the proper polarization of macrophages. This review will focus on basic metabolic pathways, the effects of key enzymes and specific products, relationships between cellular metabolism and macrophage polarization in different diseases and the potential prospect of therapy targeted key metabolic enzymes. In particular, the types and characteristics of macrophages at the maternal-fetal interface and their effects on a successful conception will be discussed.


Assuntos
Ativação de Macrófagos , Macrófagos , Fenótipo
4.
Hum Reprod ; 36(12): 3049-3061, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34647126

RESUMO

STUDY QUESTION: Is the protein l-arginine methyltransferase 3 (PRMT3)/asymmetrical dimethylarginine (ADMA)/nitric oxide (NO) pathway involved in the development of recurrent miscarriage (RM), and what is the potential mechanism? SUMMARY ANSWER: Elevated levels of PRMT3 and ADMA inhibit NO formation in the decidua, thereby impairing the functions of trophoblast cells at the maternal-foetal interface. WHAT IS KNOWN ALREADY: Decreased NO bioavailability is associated with RM. ADMA, an endogenous inhibitor of nitric oxide synthase (NOS), is derived from the methylation of protein arginine residues by PRMTs and serves as a predictor of mortality in critical illness. STUDY DESIGN, SIZE, DURATION: A total of 145 women with RM and 149 healthy women undergoing elective termination of an early normal pregnancy were enrolled. Ninety-six female CBA/J, 24 male DBA/2 and 24 male BALB/c mice were included. CBA/J × DBA/2 matings represent the abortion group, while CBA/J × BALB/c matings represent the normal control group. The CBA/J pregnant mice were then categorised into four groups: (i) normal + vehicle group (n = 28), (ii) abortion + vehicle group (n = 28), (iii) normal + SGC707 (a PRMT3 inhibitor) group (n = 20) and (iv) abortion + SGC707 group (n = 20). All injections were made intraperitoneally on Days 0.5, 3.5 and 6.5 of pregnancy. Decidual tissues were collected on Days 8.5, 9.5 and 10.5 of gestation. The embryo resorption rates were calculated on Day 9.5 and Day 10.5 of gestation. PARTICIPANTS/MATERIALS, SETTING, METHODS: NO concentration, ADMA content, NOS activity, expression levels of NOS and PRMTs in decidual tissues were determined using conventional assay kits or western blotting. PRMT3 expression was further analysed in decidual stromal cells, macrophages and natural killer cells. A co-culture system between decidual macrophages (DMs) and HTR-8/SVneo trophoblasts was constructed to study the roles of the PRMT3/ADMA/NO signalling pathway. Trophoblast apoptosis was analysed via Annexin V-fluorescein isothiocyanate/propidium iodide staining. CBA/J × DBA/2 mouse models were used to investigate the effects of SGC707 on embryo resorption rates. MAIN RESULTS AND THE ROLE OF CHANCE: Our results show that NO concentration and NOS activity were decreased, but ADMA content and PRMT3 expression were increased in the decidua of RM patients. Moreover, compared with the normal control subjects, PRMT3 expression was significantly up-regulated in the macrophages but not in the natural killer cells or stromal cells of the decidua from RM patients. The inhibition of PRMT3 results in a significant decrease in ADMA accumulation and an increase in NO concentration in macrophages. When co-cultured with DMs, which were treated with SGC707 and ADMA, trophoblast apoptosis was suppressed and induced, respectively. In vivo experiments revealed that the administration of SGC707 reduced the embryo resorption rate of CBA/J × DBA/2 mice. LIMITATIONS, REASONS FOR CAUTION: All sets of experiments were not performed with the same samples. The main reason is that each tissue needs to be reserved for clinical diagnosis and only a small piece of each tissue can be cut and collected for this study. WIDER IMPLICATIONS OF THE FINDINGS: Our results indicate that the PRMT3/ADMA/NO pathway is a potential marker and target for the clinical diagnosis and therapy of RM. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (2017YFC1001401), National Natural Science Foundation of China (81730039, 82071653, 81671460, 81971384 and 82171657) and Shanghai Municipal Medical and Health Discipline Construction Projects (2017ZZ02015). The authors have declared no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Aborto Habitual , Arginina , Macrófagos , Óxido Nítrico , Proteína-Arginina N-Metiltransferases/metabolismo , Trofoblastos , Aborto Habitual/metabolismo , Animais , Apoptose , Arginina/análogos & derivados , Arginina/metabolismo , China , Decídua/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Óxido Nítrico/metabolismo , Gravidez , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...